sábado, 17 de mayo de 2014

04. Trabajo 3: Hipótesis

En caso de pretender formalizar una hipótesis en término de probabilidades sobre la existencia de los camellos venezolanos, podemos decir que:
·         la población estudiada es la fauna venezolana salvaje;
·         la hipótesis para probar es que el número de camellos en esta fauna es nulo;
·         la muestra se constituye del conjunto de animales observados hasta el momento del test;
·         la estadística usada es el número de camellos observados.
De manera concreta, en el caso de los camellos, es imposible construir un enunciado del tipo “Ubiqué X camellos hasta el momento. Supongo que el camello no es parte de la fauna salvaje venezolana (o sea que supongo que los que vi eran animales escapados de un zoológico o de un circo). Si mi suposición es cierta, la probabilidad de observar X camellos escapados son de Y en un millón”... En un test de hipótesis, es necesario poder cuantificar este Y.

Para tener una distribución de probabilidad (su distribución de muestreo), es necesario que la variable-test sea un variable aleatoria. En cambio, acabado el sorteo de la muestra, los valores observados ya no son aleatorios sino, más bien, fijos (así́ como el número de camellos detectados, una vez que hayan sido contados). La contradicción existe solamente en las apariencias en cuanto recordemos la distinción entre una variable aleatoria y los valores que puede tomar. En efecto, la muestra sorteada es sólo una de las muestras posibles. A cada una de ellas corresponde un valor de la variable-test (es poco probable que otros viajeros o el mismo viajero en otro momento hubieran visto el mismo número de camellos). Antes de sortear la muestra, existía por lo tanto una multitud (y en algunos casos, una infinidad) de valores posibles de la variable-test. En otras palabras, imaginando que nos encontramos justo antes del sorteo, entonces la variable-test es, por lo tanto, claramente una variable aleatoria a la cual se asocia una distribución de probabilidad (la distribución de muestreo).

En otro ejemplo, observemos estos dos títulos de periódico:

HOMBRE MORDIDO POR UN PERRO
Y

PERRO MORDIDO POR UN HOMBRE

En los dos casos se emplean las mismas palabras; sólo se modificó un tanto su orden. Entonces, ¿por qué el segundo título es digno de la portada de la sección de sucesos de un periódico y no el primero? Claro está que el segundo relata un evento sorprendente, sorprendente porque su probabilidad era muy pequeña.

De la misma manera, consideramos a una persona que acaba de ganar la lotería como una persona con mucha suerte sólo porque la probabilidad de que fuera ella era muy pequeña.

Resumiendo, la distinción entre el valor observado y su distribución es análoga a la distinción entre lo que efectivamente aconteció́ y lo que esperábamos. Siendo poetas, podríamos decir que el evento que se realiza no borra el recuerdo de lo que se esperaba de él sino todo lo contrario, la sorpresa nace del choque entre los dos.


No hay comentarios:

Publicar un comentario